

SunFounder RGB Matrix Module for Arduino

Welcome to use SunFounder RGB Matrix module. You can find the information you need for use here.

This is a module with 8 × 8 RGB LEDs on board. It also has a SH1.0-4P I2C control interface, which is convenient to connect to other I2C devices or other single-chip microcomputers.

Here is the Email: cs@sunfounder.com.

	Features

	Assemble the Shield

	Preparation
	Tools needed

	Download the Code

	Add the Library

	Projects
	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Custom Shape

	Custom Dynamic Shape

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Features

[image: _images/feature.png]

	Working voltage: DC 3.3V

	Lamp bead: FM-N3535RGBW-SH

	Driver: SLED 1734X LED driver

	Communication method: I2C

	Color depth: 24 bit (R/G/B each 8 bit color, 256 x 256 x 256=16777216 colors can be combined)

	Resolution: 8*8=64 DOTS

	Pixel pitch: 4.7mm

	matrix size: 36.5mm*36.5mm

Documentation

	PCB [https://github.com/sunfounder/sf-pdf/raw/master/datasheet/RGB_Matrix_for_Arduino/Arduino-8x8%20RGB%20Matrix%20Pcb.pdf]

	Schematic [https://github.com/sunfounder/sf-pdf/raw/master/datasheet/RGB_Matrix_for_Arduino/Arduino-8x8%20RGB%20Matrix%20Sch.pdf]

	Datasheet [https://github.com/sunfounder/sf-pdf/raw/master/datasheet/RGB_Matrix_for_Arduino/IC_datasheet/SLED1734_V1.6_EN.pdf]

Assemble the Shield

[image: _images/assemble_arduino.png]

Preparation

Tools needed

Please prepare the following tools:

	Arduino UNO

	USB Cable Type A/B

	Personal Computer

The APP you have to prepare:

	Arduino IDE [https://www.arduino.cc/en/software]

Here are tutorials for installing Arduino on different systems.

	Windows OS [https://www.arduino.cc/en/Guide/Windows].

	Mac OS [https://www.arduino.cc/en/Guide/macOS].

	Linux [https://www.arduino.cc/en/Guide/Linux].

Download the Code

Go to github-rgb_matrix [https://github.com/sunfounder/rgb_matrix] download the code.

[image: _images/git.png]

Add the Library

In order to use the RGB Matrix Shield, you need to load the library as follows.

In the Arduino IDE, navigate to Sketch > Include Library > Add .ZIP Library.

[image: _images/IDE.png]
Find sunfounder_rgbMatrix.zip under the path rgb_matrix/arduino, then click Open to add it.

[image: _images/libraries.png]

Projects

This page show you the examples provided with RGB Matrix.

Note

Before downloading the code, make sure you have Add the Library.

	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Custom Shape

	Custom Dynamic Shape

Run the sketch

	Open the one sketch under the path rgb_matrix\arduino.

	Select the Board and Port.

[image: _images/select_board.png]
[image: _images/select_port.png]

	Compile.

[image: _images/compile.png]

	Upload.

[image: _images/upload.png]
[image: _images/upload2.png]

Hello Matrix

Introduce

In this project, you will learn how to make RGB Matix HAT display different patterns and characters in different colors.

[image: _images/hello_matrix_arduino.png]
Code

When the program runs, you will see a dot, a line, a rectangle, a love pattern, the letter A, and the text Hi, SunFouder appear on the RGB Matrix Shield in turn.

 Dazzling Light

Dazzling Light

In the previous project, we learned to use some simple functions to make RGB Matrix Shield work. So here, we will use the draw_line() function with different colors to make RGB Matrix HAT make more cool effects.

[image: _images/dazzling1.png]
Code

We have written two light blinking modes, dazzling_light() and dazzling_light()2 for reference.
When the program is running, you will first see the RGB matrix shield flowing on displaying different colors. After a while, you will notice that the flow of light becomes more smooth.

 Moving Eye

Moving Eye

Introduce

In this project, we will use the draw_rectangle() and draw_point() functions to draw an eye pattern and achieve the effect of moving the eye around.

[image: _images/moving_eyes1.png]
Code

When the program is running, you will see an eye moving around on the RGB Matrix Shield.

 Christmas Tree

Christmas Tree

In this project, we will use the draw_point() function to make a colorful Christmas tree.

[image: _images/tree1.png]
Code

When the program runs, you will see a shiny Christmas tree appear on the RGB Matrix Shield.

 Custom Shape

Custom Shape

To draw interesting patterns on RGB Matrix Shield, we define ShowHex() function to facilitate drawing custom patterns.

First you should get the hexadecimal array of the pattern. It is recommended to use the LED Matrix tool [https://gurgleapps.com/tools/matrix#tp-color], which can be used to design fonts or images for the RGB matrix, and you can also adjust it based on the original pattern.

You can select the corresponding character or pattern in the Sprites page, then set a specific color in the Colour page, and finally get the HEX array of that pattern or character from the Code page.

For example, we get two HEX arrays of Pac-Man.

[image: _images/pacman.png]
[image: _images/pacman2.png]
Code

When the program runs, you will see two Pac-Man pictures are constantly switching.

 Custom Dynamic Shape

Custom Dynamic Shape

Now, based on the previous project, make several patterns display more consistently.

[image: _images/DIYshape1.png]
[image: _images/DIY2shape12.png]
Code

When the program runs, Pac-Man will move to the right, then it will stop and turn its head to smile at you, and finally continue to move to the right.

 Index

Index

 Assemble RGB Matrix HAT

Assemble RGB Matrix HAT

[image: _images/assemble_raspberrypi.png]

 Camera Recognition

Camera Recognition

In this project, we will make a color recognizer, connect a camera module to the Raspberry Pi, use PiCamera and OpenCV to process the objects captured by the camera, and express its colors with RGB Matrix HAT.

Note

This example needs to enable the Raspberry Pi Camera function [https://docs.sunfounder.com/projects/raphael-kit/en/latest/components/component_camera_module.html#camera-module].

Then install third-party dependencies

sudo pip3 install opencv-contrib-python
sudo apt-get install -y python3-h5py libatlas-base-dev
sudo pip3 install -U numpy

Run the code

When the program is running, hold the camera moduel and aim at some brightly colored objects, you will find that the RGB Matrix HAT also shows similar colors.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 camera.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

To run this example, you need to turn on Camera on raspi-config => Interfacing => Camera
Then run the following command to install dependencies
sudo pip3 install opencv-contrib-python
sudo apt-get install -y python3-h5py libatlas-base-dev
sudo pip3 install -U numpy

from picamera.array import PiRGBArray # Generates a 3D RGB array
from picamera import PiCamera
import time
import cv2

from PIL import Image
from rgb_matrix import RGB_Matrix

rr = RGB_Matrix(0X74)

camera = PiCamera()
camera.resolution = (1280, 720)
raw_capture = PiRGBArray(camera, size=(1280, 720))
Allow the camera to warmup
time.sleep(0.1)
Grab an image from the camera
for frame in camera.capture_continuous(raw_capture, format="rgb", use_video_port=True):

 image = frame.array

 # Convert image to 8x8 for RGB matrix
 img = cv2.resize(image, (8, 8), interpolation = cv2.INTER_AREA)
 im_pil = Image.fromarray(img)

 # Render
 rr.image(list(im_pil.getdata()))

 raw_capture.truncate(0)

How it works?

from picamera.array import PiRGBArray # Generates a 3D RGB array
from picamera import PiCamera
import time
import cv2

from PIL import Image
from rgb_matrix import RGB_Matrix

	Import PiCamera to support the use of the camera.

	Import PiRGBArray to help the Raspberry Pi output the captured images in the form of an array.

	Import OpenCV vision library where cv2` is the name of the C++ namespace of Opencv.

	Import the image processing library PIL of the python platform.

camera = PiCamera()
camera.resolution = (1280, 720)raw_capture = PiRGBArray(camera, size=(1280, 720))

Create a PiCamera object and call PiRGBArray() to generate an RGB three-dimensional array with a resolution of (1280, 720) and pass it to raw_capture.

for frame in camera.capture_continuous(raw_capture, format="rgb", use_video_port=True):

 image = frame.array

Traverse the images captured by the camera and pass them to the image in the form of an RGB three-dimensional array.

img = cv2.resize(image, (8, 8), interpolation = cv2.INTER_AREA)
im_pil = Image.fromarray(img)

Convert the picture into an 8x8 RGB Matrix HAT and pass it to im_pil in the form of an array.

rr.image(list(im_pil.getdata()))

Convert im_pil into a list form to be used as a parameter of rr.image to light up the RGB Matrix HAT.

raw_capture.truncate(0)

Clear raw_capture in this loop.

 Christmas Tree

Christmas Tree

In this project, we will use the draw_point() function to make a colorful Christmas tree.

[image: _images/tree2.png]
Run the code

When the program runs, you will see a shiny Christmas tree appear on the RGB Matrix HAT.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 christmas_tree.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time
from color import Color

def tree():

 for i in green_coor:
 rr.draw_point(i,(0,255,0))

 for i in yellow_coor:
 rr.draw_point(i,(255,255,0))

 for i in red_coor:
 rr.draw_point(i,(255,0,0))

 rr.display()

def dot():
 col = Color()

 for i in flash_coor:
 rr.draw_point(i,col.random())
 rr.display()

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]

 green_coor = [[3,0],[4,0],
 [2,1],[3,1],[5,1],
 [1,2],[2,2],[4,2],[5,2],[6,2],
 [1,3],[2,3],[3,3],[4,3],[6,3],
 [2,4],[4,4],[5,4],
 [1,5],[3,5],[5,5],[6,5],
 [1,6],[2,6],[3,6],[4,6],[5,6],[6,6]
]

 flash_coor = [[4,1],[3,2],[5,3],[3,4],[2,5],[4,5]]
 red_coor = [[0,3],[7,3],[0,6],[7,6]]
 yellow_coor = [[3,0],[4,0],[3,6],[4,6],[3,7],[4,7]]

 tree()
 while True:
 dot()

How it works?

from color import Color

Import the color class Color, which is a class that we encapsulate to manipulate RGB Matrix HAT colors. In this project, we will use a class function random() to display random colors.

green_coor = [[3,0],[4,0],
 [2,1],[3,1],[5,1],
 [1,2],[2,2],[4,2],[5,2],[6,2],
 [1,3],[2,3],[3,3],[4,3],[6,3],
 [2,4],[4,4],[5,4],
 [1,5],[3,5],[5,5],[6,5],
 [1,6],[2,6],[3,6],[4,6],[5,6],[6,6]]

flash_coor = [[4,1],[3,2],[5,3],[3,4],[2,5],[4,5]]
red_coor = [[0,3],[7,3],[0,6],[7,6]]
yellow_coor = [[3,0],[4,0],[3,6],[4,6],[3,7],[4,7]]

Divide the Christmas tree into four parts, the red part, the yellow part, the green part, and the blinking part, so we need four lists to store these coordinates.

def tree():

 for i in green_coor:
 rr.draw_point(i,(0,255,0))

 for i in yellow_coor:
 rr.draw_point(i,(255,255,0))

 for i in red_coor:
 rr.draw_point(i,(255,0,0))

 rr.display()

Define a tree() function to draw the green(0, 255, 0), yellow(255, 255, 0) and red(255, 0, 0) parts of the Christmas tree.

def dot():
 col = Color()

 for i in coor:
 rr.draw_point(i,col.random())
 rr.display()

For the blinking points in the Christmas tree, we can use the random() function in the Color class to achieve. The function of random() is to return a random RGB value, that is, to display random colors in a loop to achieve a blinking effect.

tree()
while True:
 dot()

Finally, two functions are called to draw the Christmas tree. The blinking is continuous, so dot() should be called in the loop.

 Custom Dynamic Shape

Custom Dynamic Shape

Here, based on the previous project, a continuous animation of Pac-Man eating dots will be created.

[image: _images/DIY2shape2.png]
[image: _images/DIY2shape22.png]
Run the code

When the program is running, you will see Pac-Man on the RGB matrix cap move from left to right and leave after eating the rightmost dot.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 custom_dynamic_shape.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time
import random

def pacman(a,k):

 list2 = [[a-4,0,a-1,0],
 [a-5,1,a,1],
 [a-6,2,a-5,2],
 [a-3,2,a-1,2],
 [a-6,3,a-2,3],
 [a-6,4,a-2,4],
 [a-6,5,a-1,5],
 [a-5,6,a,6],
 [a-4,7,a-1,7]]

 fill = (144,192,22)
 for i in range(0,k+1):
 for j in list2:
 rr.draw_line(j,fill)

 rr.display()

 for j in list2:
 rr.draw_line(j,fill=(0,0,0))

 for i in range(0,9):
 list2[i][0] += 1
 list2[i][2] += 1

 time.sleep(0.1)

def pacman2():

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,7,2],
 [0,3,7,3],
 [0,4,3,4],
 [0,5,7,5],
 [1,6,6,6],
 [2,7,5,7]]

 fill = (144,192,22)
 for i in list:
 rr.draw_line(i,fill)

 rr.display()
 time.sleep(0.1)

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

def pac():

 coor = [6,3,7,4]
 rr.draw_rectangle(coor,fill=(82,52,25))

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]

 while True:
 pac()
 pacman(0,6)
 pacman2()
 pacman(6,7)

How it works?

while True:
 pac()
 pacman(0,6)
 pacman2()
 pacman(6,7)

We can disassemble Pac-Man into three actions, pac() represents the position of the dot.

	pacman(0,6) means that Pac-Man moves from the far left to the side of the dot.

	pacman2() mouth closed to indicate the action of eating.

	pacman(6,7) indicates to continue to leave after eating.

def pacman(a,k):

 list2 = [[a-4,0,a-1,0],
 [a-5,1,a,1],
 [a-6,2,a-5,2],
 [a-3,2,a-1,2],
 [a-6,3,a-2,3],
 [a-6,4,a-2,4],
 [a-6,5,a-1,5],
 [a-5,6,a,6],
 [a-4,7,a-1,7]]

 fill = (144,192,22)
 for i in range(0,k+1):
 for j in list2:
 rr.draw_line(j,fill)

 rr.display()

 for j in list2:
 rr.draw_line(j,fill=(0,0,0))

 for i in range(0,9):
 list2[i][0] += 1
 list2[i][2] += 1

 time.sleep(0.1)

The pacman() function is used to make Pac-man move from the left to the right in an open-mouthed state until it disappears. It has two parameters a and k, a represents the starting position of Pac-man and k represents the number of squares moved to the right.

	list2 stores the coordinates of Pac-man’s open-mouth state, drawn as lines, with the x-coordinate of each line determined by a.

	Define a two-level for loop. The inner loop does three things: draws Pac-Man, moves each line in list2 one square to the right, and removes the movement.

	The outer layer repeats the loop k times, which means Pac-Man moves k squares to the right.

 Custom Shape

Custom Shape

In the previous project, we made a Christmas tree with point coordinates. In this project, we used straight lines to piece together a pattern of Pac-Man.

[image: _images/DIYshape2.png]
[image: _images/DIYshape22.png]
Run the code

When the program runs, you will see a Pac-Man appearing on the RGB Matrix HAT, and its mouth is continuously opening and closing.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 custom_shape.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time
import random

def pacman():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,5,2],
 [0,3,4,3],
 [0,4,4,4],
 [0,5,5,5],
 [1,6,6,6],
 [2,7,5,7]]

 fill = (144,192,22)
 for i in list:
 rr.draw_line(i,fill)

 rr.display()
 time.sleep(1)

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

def pacman2():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,7,2],
 [0,3,7,3],
 [0,4,3,4],
 [0,5,7,5],
 [1,6,6,6],
 [2,7,5,7]]

 fill = (144,192,22)
 for i in list:
 rr.draw_line(i,fill)

 rr.display()
 time.sleep(1)

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]

 while True:
 pacman()
 time.sleep(0.5)
 pacman2()

How it works?

def pacman():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,5,2],
 [0,3,4,3],
 [0,4,4,4],
 [0,5,5,5],
 [1,6,6,6],
 [2,7,5,7]]

def pacman2():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,7,2],
 [0,3,7,3],
 [0,4,3,4],
 [0,5,7,5],
 [1,6,6,6],
 [2,7,5,7]]

Define two functions pacman() and pacman2() to represent the two states of Pac-Man. These two states are composed of many lines, and two lists are defined to store the starting and ending coordinates of these lines respectively. rectangle_coor represents the entire RGB matrix HAT, which can be used to clear the screen.

fill = (144,192,22)
for i in list:
 rr.draw_line(i,fill)

rr.display()
time.sleep(1)

rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

The above code exists in both functions pacman() and pacman2() and is used to display the 2 states of Pac-Man in yellow in the RGB Matrix HAT and then clear the screen.

while True:
 pacman()
 time.sleep(0.5)
 pacman2()

Call pacman() and pacman2() cyclically to increase the dynamic effect of Pac-Man.

You can also imagine other more interesting patterns, this website [https://gurgleapps.com/tools/matrix#tp-color] may be able to get some references.

 Dazzling Light

Dazzling Light

In the previous project, we learned to use some simple functions to make RGB Matrix HAT work. So here, we will use the draw_line() function with different colors to make RGB Matrix HAT make more cool effects.

[image: _images/dazzling2.png]
Run the code

As the program runs, you will see the colors on the RGB Matrix HAT changing from right to left.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 dazzling_lights.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time

def ColorHSV(hue):

 if hue < 510: # Red to Green-1
 b = 0
 if hue < 255: # Red to Yellow-1
 r = 255
 g = hue # g = 0 to 254
 else: # Yellow to Green-1
 r = 510 - hue # r = 255 to 1
 g = 255

 elif hue < 1020: # Green to Blue-1
 r = 0
 if hue < 765: # Green to Cyan-1
 g = 255
 b = hue - 510 # b = 0 to 254
 else: # Cyan to Blue-1
 g = 1020 - hue # g = 255 to 1
 b = 255

 elif hue < 1530: # Blue to Red-1
 g = 0
 if hue < 1275: # Blue to Magenta-1
 r = hue - 1020 # r = 0 to 254
 b = 255
 else: # Magenta to Red-1
 r = 255
 b = 1530 - hue # b = 255 to 1

 else: # Last 0.5 Red (quicker than % operator)
 r = 255
 g = b = 0

 list = [r, g, b]
 return list

def flash():
 list = [[0, 0, 0, 7],
 [1, 0, 1, 7],
 [2, 0, 2, 7],
 [3, 0, 3, 7],
 [4, 0, 4, 7],
 [5, 0, 5, 7],
 [6, 0, 6, 7],
 [7, 0, 7, 7]]

 firsthue = 0
 hue = 0
 while firsthue < 1530:
 j = 0
 for i in list:
 hue = firsthue + j * 95
 j = j + 1
 if hue > 1530:
 hue = hue - 1530
 temp = ColorHSV(hue)
 #print(temp[0],temp[1],temp[2])
 #time.sleep(2)
 rr.draw_line(i, (temp[0], temp[1], temp[2]))
 rr.display()
 firsthue = firsthue + 11

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 while True:
 flash()

How it works?

In reality, there are three primary colors of red, yellow, and blue, and there are generally three primary colors of red, green, and blue in the display screen, that is, RGB. Their values ​​are generally used
FF0000,00FF00,0000FF means, converted to decimal is (255,0,0),(0,255,0),(0,0,255).
This website [https://www.rapidtables.com/web/color/RGB_Color.html] can help us better understand the three primary colors.

def ColorHSV(hue):

 if hue < 510: # Red to Green-1
 b = 0
 if hue < 255: # Red to Yellow-1
 r = 255
 g = hue # g = 0 to 254
 else: # Yellow to Green-1
 r = 510 - hue # r = 255 to 1
 g = 255

 elif hue < 1020: # Green to Blue-1
 r = 0
 if hue < 765: # Green to Cyan-1
 g = 255
 b = hue - 510 # b = 0 to 254
 else: # Cyan to Blue-1
 g = 1020 - hue # g = 255 to 1
 b = 255

 elif hue < 1530: # Blue to Red-1
 g = 0
 if hue < 1275: # Blue to Magenta-1
 r = hue - 1020 # r = 0 to 254
 b = 255
 else: # Magenta to Red-1
 r = 255
 b = 1530 - hue # b = 255 to 1

 else: # Last 0.5 Red (quicker than % operator)
 r = 255
 g = b = 0

 list = [r, g, b]
 return list

Reference from Adafruit_NeoPixel [https://github.com/adafruit/Adafruit_NeoPixel/blob/216ccdbff399750f5b02d4cc804c598399e39713/Adafruit_NeoPixel.cpp#L2414].

Because red is centered on the rollover point (the +32768 above, essentially a fixed-point +0.5), the above actually yields 0 to 1530, where 0 and 1530 would yield the same thing. Rather than apply a costly modulo operator, 1530 is handled as a special case below.

So you’d think that the color “hexcone” (the thing that ramps from pure red, to pure yellow,
to pure green and so forth back to red, yielding six slices),
and with each color component having 256 possible values (0-255),
might have 1536 possible items (6*256), but in reality there’s 1530. This is because the last element in
each 256-element slice is equal to the first element of the next
slice, and keeping those in there this would create small
discontinuities in the color wheel. So the last element of each
slice is dropped…we regard only elements 0-254, with item 255
being picked up as element 0 of the next slice. Like this:

	Red to not-quite-pure-yellow is: 255, 0, 0 to 255, 254, 0

	Pure yellow to not-quite-pure-green is: 255, 255, 0 to 1, 255, 0

	Pure green to not-quite-pure-cyan is: 0, 255, 0 to 0, 255, 254

	and so forth.

Hence, 1530 distinct hues (0 to 1529), and hence why the constants below are not the multiples of 256 you might expect.

def flash():
 list = [[0,0,0,7],
 [1,0,1,7],
 [2,0,2,7],
 [3,0,3,7],
 [4,0,4,7],
 [5,0,5,7],
 [6,0,6,7],
 [7,0,7,7]]

The list list stores the starting and ending coordinates of the 8 vertical lines (from left to right), so that each line can be given a different color in the code later to achieve the colorful effect.

firsthue = 0
hue = 0
while firsthue < 1530:
 j = 0
 for i in list:
 hue = firsthue + j*95
 j = j + 1
 if hue > 1530:
 hue = hue-1530
 temp = ColorHSV(hue)
 rr.draw_line(i,(temp[0],temp[1],temp[2]))
 rr.display()
 firsthue = firsthue + 11

firshue and hue are passed to ColorHSV() as parameters.

Define a two-layer loop, the inner for loop is to draw eight lines in eight different colors,
The outer while loop is to add 11 to the hue values ​​of the eight colors to achieve the effect of color flow.

For example, in the first for loop, 0, 95, 190, 285, 380, 475, 570, 665 are used as the hue value of the initial color of the 8 lines, and then enter the outer loop to increase the hue value of each line color by 11 to become 11, 106, 201, 296, 391, 486, 581, 676 to achieve the effect of line color sliding.

 Projects

Projects

In this chapter, you will learn how to use RGB Matrix HAT and do some interesting projects.

Download the Code

Use the following command to download the code from the github repository.

git clone https://github.com/sunfounder/rgb_matrix

Note

Since RGB Matrix HAT uses I2C for communication, you need to do I2C Configuration before running the following projects.

Projects

	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Greedy Snake

	Camera Recognition

	Custom Shape

	Custom Dynamic Shape

 Greedy Snake

Greedy Snake

In this project, we use the RGB matrix HAT as the display screen to create a snake eating game by reading the values of the keyboard keys to change the display effect.

[image: _images/snake.png]
Run the code

When the program runs, the snake game starts, the keyboard a and d controls the snake to turn left and right.
Each time the snake eats a bean, score plus one. When it encounters itself, the score returns to zero.
After a period of time, the screen will turn blue, and the score will be displayed after a while. Press q to end the game, and Ctrl+C to exit the program.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 snake_game.py

Code

You can view the code by typing the command nano snake_game.py in Terminal or by clicking on github-snake_game.py [https://github.com/sunfounder/rgb_matrix/blob/master/raspberrypi/snake_game.py].

How it works?

def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

This function is used to read keyboard input and return the entered characters.

def Keyboard_control():
 while True:

 global power_val,key
 # key = 'n'
 key=readkey()
 time.sleep(0.22)
 if key=='q':
 print("quit")
 break

Keyboard_control() is used for keyboard control. Call readkey() in an infinite loop to receive the characters input by the keyboard. In addition, the logic of snake-eating is also an infinite loop, then multithreading may be needed when there are multiple infinite loops in a program.

def snake_game():
 global key
 rr = RGB_Matrix(0X74)
 rectangle_coor = [0,0,7,7]
 #rr.draw_rectangle(rectangle_coor,fill=(51,51,0)) #draw a rectangle
 coor_1 = np.asarray([0,2])
 coor_2 = np.asarray([1,2])
 coor_3 = np.asarray([2,2])
 coor_4 = np.asarray([3,2])
 coor_list = [coor_1,coor_2,coor_3,coor_4]
 ...

snake_game() is used to represent snake-eating logic. The received key value is a character entered by the keyboard, which needs to be declared as a global variable with globla.

There are three main parts of snake logic:

	In the first part, when the a or d key is not pressed, first judge the horizontal and vertical, and then judge the forward direction, and then add 1 or subtract 1 to the horizontal or vertical coordinates of each point to achieve the effect of moving up, down, left, and right.

	The second part is to judge whether the a or d key is pressed. If yes, then judge the horizontal and vertical direction and then determine the forward direction, and then add one or subtract one to the coordinates of each point of the snake head, and the snake head coordinates are additionally processed to achieve the effect of turning the head.

	The third part is to determine whether the snake head is in contact with dot. If yes, set eat_flag to False and add an element to the list of snakes to achieve the effect of growing snakes.

[image: _images/snake_flow.png]
if __name__ == "__main__":
 t1 = threading.Thread(target=Keyborad_control)
 t2 = threading.Thread(target=snake_game)
 t1.setDaemon(True)
 t2.setDaemon(True)
 t1.start()
 t2.start()
 while True:
 pass

The Thread method in the threading ``class can help us create a thread, and the parameter is ``target=function name.

	SetDaemon(True) sets the thread as a daemon thread. It is generally used in an unimportant thread with an infinite loop.

	Start() starts the thread.

 Hello Matrix

Hello Matrix

In this project, you will learn how to make RGB Matix HAT display different patterns and characters in different colors.

[image: _images/hello_matrix.png]
Run the code

When the program runs, you will see a point, a line, a rectangle, an ellipse, and the text ‘Hi, SunFounder’ appears on the RGB Matrix HAT in turn.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 hello_matrix.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time

rr = RGB_Matrix(0x74) # create an RGB_Matrix object

point_coor = [3,1]
rr.draw_point(point_coor,fill=(255,255,0)) #draw a point
rr.display()
time.sleep(3)

line_coor = [0,2,7,2]
rr.draw_line(line_coor,fill=(255,0,0)) # draw a line
rr.display()
time.sleep(3)

rectangle_coor = [0,4,2,6]
rr.draw_rectangle(rectangle_coor,fill=(255,0,0)) #draw a rectangle
rr.display()
time.sleep(3)

ellipse_coor = [5,5]
radius = 2
rr.draw_ellipse(ellipse_coor,radius,fill=(0,255,0)) #draw a ellipse
rr.display() #display the picture which you draw
time.sleep(3)

text = 'Hi, SunFounder'
rr.show_text(text, delay=200,color=(0,0,255)) # show text
rr.display()
time.sleep(4)

How it works?

from rgb_matrix import RGB_Matrix

rr = RGB_Matrix(0x74)

Import the RGB_Matrix class, and then create its object rr for us to call its class member functions.

point_coor = [3,1]
rr.draw_point(point_coor,fill=(255,255,0)) #draw a point
rr.display()
time.sleep(3)

The above code is to display a yellow dot on the (3,1) coordinate of the RGB dot matrix.

draw_point() is a function that draws a point with 2 parameters: the first parameter is the coordinate on the RGB Matrix HAT, and the second parameter sets the color for the point.

The x,y coordinate directions of the dot matrix are as follows, with the first RGB LED in the upper left corner as the coordinate origin.

[image: _images/hello2.png]
The fill tuple contains three elements R, G and B (red, green and blue) in the range 0-255. For example, when fill=(255,0,0), red is displayed. Refer to: https://www.rapidtables.com/web/color/RGB_Color.html for more color value combinations.

Once the coordinate and color are determined, the display() function is called to implement on the RGB dot matrix HAT.

line_coor = [0,2,7,2]
rr.draw_line(line_coor,fill=(255,0,0)) # draw a line
rr.display()
time.sleep(3)

The above code draws a red line starting at coordinate (0,2) and ending at (7,2).

draw_line() is a line drawing function, line_coor=[0,2,7,2] stores the coordinates of the start and end of the line (2 points determine a line). fill=(255,0,0) represents the line color is red.

rectangle_coor = [0,4,2,6]
rr.draw_rectangle(rectangle_coor,fill=(255,0,0)) #draw a rectangle
rr.display()
time.sleep(3)

The above code draws a red rectangle with coordinates (0, 4) and coordinates (2, 6) as diagonal coordinates.

draw_rectangle() is a function that draws a rectangle. The list rectangle_coor = [0,4,2,6] represents the two diagonal coordinates of the rectangle (0,4) and (2,6). The fill=(255,0,0) indicates that the rectangle color is red.

ellipse_coor = [5,5]
radius = 2
rr.draw_ellipse(ellipse_coor,radius,fill=(0,255,0)) #draw a ellipse
rr.display() #display the picture which you draw
time.sleep(3)

The above code draws a green circle with the coordinates (5,5) as the center and a radius of 2.

draw_ellipse() is a function that draws a circle with three arguments that determine the center, radius and color of the circle.

text = 'Hi, SunFounder'
rr.show_text(text, delay=200,color=(0,0,255)) # show text
rr.display()
time.sleep(4)

The above code is to move and display ‘Hi, SunFounder’ on the RGB Matrix HAT.

show_text() is used to display text information, text represents the string to be displayed, delay represents the moving time, the larger the value, the slower the text moving speed.

 Moving Eye

Moving Eye

In this project, we will use the draw_rectangle() and draw_point() functions to draw an eye pattern and achieve the effect of moving the eye around.

[image: _images/moving_eyes2.png]
Run the code

When the program is running, you will see an eye moving around on the RGB matrix HAT.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 moving_eyes.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time

def up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def down(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[1] += 1
 list[3] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def left(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] -= 1
 list[2] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def right(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] += 1
 list[2] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def left_down(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] -= 1
 list[2] -= 1
 list[1] += 1
 list[3] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def left_up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] -= 1
 list[2] -= 1
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def right_up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] += 1
 list[2] += 1
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def right_down(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] += 1
 list[2] += 1
 list[1] += 1
 list[3] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]
 rr.draw_rectangle(rectangle_coor,fill=(251,248,40))

 point_arry = [[0,0],[1,0],[0,1],[6,0],[7,0],[7,1],[0,6],[0,7],[1,7],[7,6],[7,7],[6,7]]
 for i in range(len(point_arry)):
 rr.draw_point(point_arry[i],fill=(0,0,0))

 list = [3,3,4,4]
 rr.draw_rectangle(list,fill=(0,0,0),outline=None, width=0)

 rr.display()
 while True:
 up(list,3)
 down(list,6)
 up(list,6)
 down(list,6)
 up(list,3)
 time.sleep(1)
 right_down(list,2)
 up(list,4)
 left(list,4)
 down(list,4)
 right(list,4)
 left_up(list,2)
 time.sleep(1)

How it works?

rectangle_coor = [0,0,7,7]
rr.draw_rectangle(rectangle_coor,fill=(251,248,40))

point_arry = [[0,0],[1,0],[0,1],[6,0],[7,0],[7,1],[0,6],[0,7],[1,7],[7,6],[7,7],[6,7]]
for i in range(len(point_arry)):
 rr.draw_point(point_arry[i],fill=(0,0,0))

list = [3,3,4,4]
rr.draw_rectangle(list,fill=(0,0,0),outline=None, width=0)

rr.display()

	The list rectangle_coor represents a rectangle (the whole RGB dot matrix) from coordinates (0, 0) to (7, 7), and then use the draw_rectangle() function to fill this rectangle with yellow.

	The list point_arry represents the 12 points in the four corners, then use the draw_point() function to set the color of each point to (0, 0, 0), i.e., extinguish these points. This depicts the outline of an eye.

	The list represents a small rectangle from (3, 3) to (4, 4), and then use the draw_rectangle() function to set the color of this rectangle to (0, 0, 0) to make the rectangle go out. This will describe the outline of the eyeball.

	Finally, the eye pattern is displayed on the RGB Matrix HAT using the display() function.

while True:
 up(list,3)
 down(list,6)
 up(list,6)
 down(list,6)
 up(list,3)
 time.sleep(1)
 right_down(list,2)
 up(list,4)
 left(list,4)
 down(list,4)
 right(list,4)
 left_up(list,2)
 time.sleep(1)

The main loop is to make the eyeball keep moving up and down, then turn one cycle, and finally return to the original position.

We call some functions to move the eyeball, for example up(list,3) is to move the eyeball up three squares, now look at how this function is implemented.

def up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

The up() function has 2 parameters list and step, the internal logic is to move the rectangle list up step squares (default is 1).

	Define a for() loop with the number of loops determined by step. In the for() loop, set the color of the rectangle list to yellow.

	list = [3,3,4,4] are the 2 diagonal coordinates (3,3) and (4,4), list[1] and list[3] are subtracted by one, meaning that the y-values of the 2 diagonal coordinates are subtracted by one.

	Then the modified list = [3,2,4,3] color is set to (0,0,0) by the function draw_rectangle() and displayed on the dot matrix by the function display().

	After one for loop in this way, the pupil is moved up one square.

 Play with Arduino

Play with Arduino

This chapter includes installing the Arduino IDE, uploading code to the Arduino board using the Arduino IDE, and some interesting and practical projects to help you learn and use the RGB Matrix Shield quickly.

It is recommended that you read the chapters in order.

	Assemble the Shield

	Preparation
	Tools needed

	Download the Code

	Add the Library

	Projects
	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Custom Shape

	Custom Dynamic Shape

 Play with Raspberry Pi

Play with Raspberry Pi

This chapter includes installing the Raspberry Pi OS, configuring the Raspberry Pi and some interesting and practical examples to help you quickly learn and use the RGB Matrix HAT.

It is recommended that you read this chapter in order.

	Assemble RGB Matrix HAT

	Preparation
	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	Projects
	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Greedy Snake

	Camera Recognition

	Custom Shape

	Custom Dynamic Shape

	Appendix
	I2C Configuration

	Remote Desktop

 Appendix

Appendix

	I2C Configuration

	Remote Desktop

 I2C Configuration

I2C Configuration

Step 1: Enable the I2C port of your Raspberry Pi (If you have
enabled it, skip this; if you do not know whether you have done that or
not, please continue).

sudo raspi-config

3 Interfacing options

[image: ../_images/image282.png]
P5 I2C

[image: ../_images/image283.png]
<Yes>, then <Ok> -> <Finish>

[image: ../_images/image284.png]
Step 2: Check whether the i2c modules are loaded and active.

lsmod | grep i2c

Then the following codes will appear (the number may be different).

i2c_dev 6276 0
i2c_bcm2708 4121 0

Step 3: Install i2c-tools.

sudo apt-get install i2c-tools

Step 4: Check the address of the I2C device.

i2cdetect -y 1 # For Raspberry Pi 2 and higher version

i2cdetect -y 0 # For Raspberry Pi 1

pi@raspberrypi ~ $ i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If there is an I2C device connected, the address of the device will be displayed.

 Remote Desktop

Remote Desktop

There are two ways to control the desktop of the Raspberry Pi remotely:

VNC and XRDP, you can use any of them.

VNC

You can use the function of remote desktop through VNC.

Enable VNC service

The VNC service has been installed in the system. By default, VNC is
disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

[image: ../_images/image287.png]
Step 2

Choose 3 Interfacing Options by press the down arrow key on your
keyboard, then press the Enter key.

[image: ../_images/image282.png]
Step 3

P3 VNC

[image: ../_images/image288.png]
Step 4

Select Yes -> OK -> Finish to exit the configuration.

[image: ../_images/image289.png]
Login to VNC

Step 1

You need to download and install the VNC Viewer [https://www.realvnc.com/en/connect/download/viewer/] on personal computer. After the installation is done, open it.

Step 2

Then select “New connection”.

[image: ../_images/image290.png]
Step 3

Input IP address of Raspberry Pi and any Name.

[image: ../_images/image291.png]
Step 4

Double click the connection just created:

[image: ../_images/image292.png]
Step 5

Enter Username (pi) and Password (raspberry by default).

[image: ../_images/image293.png]
Step 6

Now you can see the desktop of the Raspberry Pi:

[image: ../_images/image294.png]
That’s the end of the VNC part.

XRDP

Another method of remote desktop is XRDP, it provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update
sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

[image: ../_images/image295.png]
Step 4

Finished the installation, you should login to your Raspberry Pi by
using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that
comes with Windows. If you are a Mac user, you can download and use
Microsoft Remote Desktop from the APP Store, and there is not much
difference between the two. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop
Connection, and input the IP address of Raspberry Pi, then click on
“Connect”.

[image: ../_images/image296.png]
Step 3

Then the xrdp login page pops out. Please type in your username and
password. After that, please click “OK”. At the first time you log in,
your username is “pi” and the password is “raspberry”.

[image: ../_images/image297.png]
Step 4

Here, you successfully login to RPi by using the remote desktop.

[image: ../_images/image20.png]

 Installing the OS

Installing the OS

Required Components

	Any Raspberry Pi

	1 * Personal Computer

	1 * Micro SD card

	

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works
on Mac OS, Ubuntu 18.04 and Windows, and is the easiest option for most
users as it will download the image and install it automatically to the
SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on
the link for the Raspberry Pi Imager that matches your operating system,
when the download finishes, click it to launch the installer.

[image: ../_images/image11.png]
Step 2

When you launch the installer, your operating system may try to block
you from running it. For example, on Windows I receive the following
message:

If this pops up, click on More info and then Run anyway, then
follow the instructions to install the Raspberry Pi Imager.

[image: ../_images/image12.png]
Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

In the Raspberry Pi Imager, select the OS that you want to install and
the SD card you would like to install it on.

[image: ../_images/image13.png]

Note

	You will need to be connected to the internet the first time.

	That OS will then be stored for future offline use(lastdownload.cache, C:/Users/yourname/AppData/Local/Raspberry Pi/Imager/cache). So the next time you open the software, it will have the display “Released: date, cached on your computer”.

Step 5

Select the SD card you are using.

[image: ../_images/image14.png]
Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable
SSH and configure wifi, these 2 items must be set, the others depend on
your choice . You can choose to always use this image customization
options.

[image: ../_images/image15.png]
Then scroll down to complete the wifi configuration and click SAVE.

Note

wifi country should be set the two-letter ISO/IEC alpha2
code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] for
the country in which you are using your Raspberry Pi, please refer to
the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

[image: ../_images/image16.png]
Step 7

Click the WRITE button.

[image: ../_images/image17.png]
Step 8

If your SD card currently has any files on it, you may wish to back up
these files first to prevent you from permanently losing them. If there
is no file to be backed up, click Yes.

[image: ../_images/image18.png]
Step 9

After waiting for a period of time, the following window will appear to
represent the completion of writing.

[image: ../_images/image19.png]

 Preparation

Preparation

In this chapter, we firstly learn to start up Raspberry Pi. The content
includes installing the OS, Raspberry Pi network and how to open terminal.

Note

You can check the complete tutorial on the official website of the Raspberry Pi: raspberry-pi-setting-up [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up].

If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

	What Do We Need?
	Required Components

	Optional Components

	Installing the OS

	Set up Your Raspberry Pi
	If You Have a Screen

	If You Have No Screen

 Set up Your Raspberry Pi

Set up Your Raspberry Pi

If You Have a Screen

If you have a screen, it will be easy for you to operate on the
Raspberry Pi.

Required Components

	Any Raspberry Pi

	1 * Power Adapter

	1 * Micro SD card

	1 * Screen Power Adapter

	1 * HDMI cable

	1 * Screen

	1 * Mouse

	1 * Keyboard

	Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your Raspberry Pi.

	Plug in the Mouse and Keyboard.

	Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and switched on.

Note

If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power in port).

	Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be displayed.

[image: ../_images/image201.png]

If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi
remotely, but before that, you need to get the IP of the Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP
address of it. There are many ways to know the IP address, and two of
them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you
can check the addresses assigned to Raspberry Pi on the admin interface
of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you
need to find it. (If you are using ArchLinuxARM system, please find
alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry
Pi. You can apply the software, Advanced IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be
displayed. Similarly, the default hostname of the Raspberry Pi OS is
raspberrypi, if you haven’t modified it.

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the
standard default shell of Linux. The Shell itself is a program written
in C that is the bridge linking the customers and Unix/Linux. Moreover,
it can help to complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open
it.

[image: ../_images/image21.png]
Step 2

Type in ssh pi@ip_address . “pi”is your username and “ip_address” is
your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input”yes”.

[image: ../_images/image22.png]
Step 4

Input the passcode and the default password is raspberry.

[image: ../_images/image23.png]
Step 5

We now get the Raspberry Pi connected and are ready to go to the next
step.

[image: ../_images/image24.png]

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some
software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter
the IP address of the RPi in the text box under Host Name (or IP
address) and 22 under Port (by default it is 22).

[image: ../_images/image25.png]
Step 3

Click Open. Note that when you first log in to the Raspberry Pi with
the IP address, there prompts a security reminder. Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in
“pi”(the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

Note

When you input the password, the characters do not display on window accordingly, which is normal. What you need is to input the correct password.

If inactive appears next to PuTTY, it means that the connection has been broken and needs to be reconnected.

[image: ../_images/image26.png]
Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

Note

If you are not satisfied with using the command window to control the Raspberry Pi, you can also use the remote desktop function, which can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

 What Do We Need?

What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs
into a computer monitor or TV, and uses a standard keyboard and mouse.
It is a capable little device that enables people of all ages to explore
computing, and to learn how to program in languages like Scratch and
Python.

Our kit applies to the following versions of the product of Raspberry Pi

[image: RPi2]
Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the
same found on many mobile phones). You will need a power supply which
provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the
Raspberry Pi OS. You will need a micro SD card with a capacity of at
least 8 GB

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the
screen that can be a TV screen or a computer monitor. If the screen has
built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI
ports of most modern TV and computer monitors. If your screen has only
DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect
your device.

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be
used when your screen has no built-in speakers or when there is no
screen operation.

_static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 SunFounder RGB Matrix Module for Arduino

 		
 Features

 		
 Assemble the Shield

 		
 Preparation

 		
 Tools needed

 		
 Download the Code

 		
 Add the Library

 		
 Projects

 		
 Hello Matrix

 		
 Dazzling Light

 		
 Moving Eye

 		
 Christmas Tree

 		
 Custom Shape

 		
 Custom Dynamic Shape

_images/DIY2shape12.png

_images/DIYshape1.png

_images/DIYshape2.png
i

o
unnnnm

_images/DIY2shape2.png
i
EE

o
unnnnm

_images/DIY2shape22.png
i

EE
o
[T

_images/DIYshape22.png
i
EE

o
unnnnm

_images/IDE.png
@ sketch_oct09a | Arduino 18,15 - o X
File it [Sketch Tools Help
Verify/Compile CtilsR A
Uplosd oy Mansge Librries. ClShife!

sketch)

aosw o

B

y o elowy

Upload Using Programmer Ctrl+Shift+U.
Export compiled Binary Ctrl+Alt+S

Show Sketch Folder ik

Add File,

Arduino lbraies
Brdge

EEPROM
Explora

_images/assemble_arduino.png
Remove the protective film from
the Light Diffusion Filter and place
the sticky side on the RGB dot
matrix.

_images/dazzling1.png

_images/dazzling2.png

_images/assemble_raspberrypi.png
the Light Diffusion Filter and place
the sticky side on the RGB dot
matrix.

! Remove the protective film from

M2.5x6 Nylon Screw '

Light Diffusion Filter

RGB Matrix HAT

Standoff

Raspberry Pi

_images/compile.png
© Dazzling_lights | Arduino 1.8.15
Eile_Edit Sketch Tools Help

Daziing_lights
1 #include <rgbMatrix.h>

2

10
1n
12
13

byee line[] [4]

i,
12,
13,
1,
s,
1,
o,

o
o
o
o
o
o
o

L
2,
3
4
s
&
7

7
7
7
7
7
7
7

= o, 0,0,

7

_images/hello1.png

_images/hello2.png
i

EE
o
[T

_images/feature.png

_images/git.png
Gotofile Add file

Clone @

HTTPS SsH GitHub CLI
nttps://github. com/sunfounder/s [}

Use Git or checkout with SVN using the web URL.

[Open with GitHub Desktop

Download ZIP

_images/hello_matrix_arduino.png

_images/image10.jpeg
Raspberry Pi 4 /Raspberry Pi3 /Raspberry Pi3
Model B Model A+ Model B+

Raspberry Pi 3 /Raspberry Pi2 Raspberry Pi 1
Model B - Model B Model B+

(" (
Raspberry Pi 1 Raspberry Pi Raspberry Pi 3
Model A+ Zero W Zero

_images/hello_matrix.png
HHHBIHHT

_images/image13.png
& Raspberry Pilmager v1.5 - X

Raspberry Pi 0S (32-bit)

A port of Debian with the Raspberry Pi Desktop (Recommended)
Released: 20210111
Oniine -1.1 GB downioad

Raspberry Pi OS (other)
Other Raspberry Pi S based images.

Other general purpose 0S.
Other general purpose Operating Systems

Media player - Kodi 0S
Kodi based Media player operating systems

Emulation and game 0S

_images/image14.png
& Raspbery Pilmager 15

S0 Card

i

Mass Storage Device USB Device - 7.9 GB
Mounted as G:\ H:\

_images/image11.png
Download for Windows

Download for macOS

Download for Ubuntu for x86

_images/image12.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.
More info

_images/image17.png
&

Raspberry Pi

_images/image15.png
i r v - _ o x
8 rapsenpinasens Ctrl+Shift+X
/ “Advanced options =

Image customization options | for this session only

(] pisable overscan to always use

[sethostname: raspberrypi

Enable SSH

(@® Use password authentication /

Set. password for 'pi’ user:

_images/image16.png
® Raspberry Pilmagerv15

Configure wifi

ssiD:
Password:

Show password

"4

[J setlocale settings

Tine one: Asia/Shanghai

_images/image20.png
Wastebasket -

L
Mouse and
Keyboard Set

_images/image201.png
Wastebasket -

L
Mouse and
Keyboard Set

_images/image18.png
& Raspberry Pi Imager v1.5 - X

Al existing data on 'Mass Storage Device USB Device' will be
erased
Are you sure you want to continue?

_images/image19.png
& Raspberry Pi Imager v1.6 - X

‘Write Successful x

Raspberry Pi OS (32-bit) has been written to Mass Storage Device
USB Device

YYou can now remove the SD card from the reader

CONTINUE

_images/image23.png
1. ssh pi@192.168.18.197 (ssh)
Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197
The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.

ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.

pi@192.168.18.197"'s password: t

_images/image24.png
1. pi@raspberrypi: ~ (ssh)
Last login: Fri Apr 12 16:56:20 on ttys@00

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.
pi@192.168.18.197"'s password:

Linux raspberrypi 4.9.80-v7+ #1098 SMP Fri Mar 9 19:11:42 GMT 2018 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue May 21 07:29:46 2019 from 192.168.18.126

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set

a new password.

pi@raspberrypi:~ $ I

_images/image21.png
ece
<

[Desktop
[Documents
© Downloads

Movies
1 Music

Pictures

12} solomen
Devices

2} Yosemite
E] windows
) pAtA

(© Remote Disc
Tags

® Red
Orange
Yellow

Green

[Utilities

Audio MIDI Setup

ColorSync Utility Console
f \/l
Grab Grapher

Script Editor

D%

System Information

Q search
D' ==
Bluetooth File Boot Camp
Exchange Assistant
Digital Color Meter Disk Utility

Keychain Access. Migration Assistant

)

Termi VoiceOver Uity

_images/image22.png
1. ssh pi@192.168.18.197 (ssh)

Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? I

_images/image25.png
#R PuTTY Configuration

Category:

- Session Basic options for your PuTTY session
Logging

L oot ‘Specify the destination you wantto connectto

I Keyboard HostName (or IP address) Port

Bell 192.168.0.101 2

i Features. e)

= Windoy ©Raw () Telnet ()Riogin © SSH

Appearance
Behaviour Load, save or delete a stored session
Translation
Seoction Saved Sessions
Colours

- Connection Defaul Setings
Data 02
Proxy
Telnet
Riogin
ssH
Serial

Close window on exit
JAways (O)Never) Only on clean exit

_images/image26.png
pieio2. 16w T2ses pmuom:raspberry

[The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

[permitted by applicable law.
Last 1ogin: Tue Feb 21 02:54:55 2017

ieraspbersypi:- s I

_images/image287.png
login as: pi
p10192.165.0.234's password:

[The programs included with the Debian GNU/Linux system are free software
che exact aistribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

[Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.
Last login: Mon Feb 20 09:18:17 2017 from daisy-pc.lan

prasaspbessps: - < [T zaspresorra

_images/image288.png
[Raspberry Pi Software Configuration Tool (raspi-config) ————

P1 Camera Enable/disable connection to the Raspberry Pi Camera
P2 SsH Enable/disable remote command line access using SSH
P4 ST Enable/disable automatic loading of SPI kernel module
5 12C Enable/disable automatic loading of I2C kernel module
P6 Serial Port Enable/disable shell messages on the serial comnection
B7 1-Wire Enable/disable one-wire interface

P8 Remote GPIO Enable/disable remote access to GPIO pins

<Select> <Back>

_images/image283.png
File Edit Tak

——— Raspberry Pi Software Configuration Tool (raspi-config) h———

P1 Camera Enable/Disable connection to the
P2 SSH Enable/Disable remote command lin
P3 VNC Enable/Disable graphical remote a

Enable/Disable
Enabl
Serial Enable/Disable

|

|

|

|

| pa
|

|

| 7 1-wire Enable/Disable one-wire interface
|

|

|

|

|

|

|

Sp1

P8 Remote GPIO Enable/Disable remote access to 6

<select> <Back>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

_images/image284.png
Would you like the ARM I2C interface to be enabled?

<No>

_images/image291.png
2 Daisy - Properties

Genersl | Options | Expert]

VNC Server: 192168.0.234

Use single sign-on if VNC Server supports

Privacy

Update desktop preview automatically

_images/image292.png
[T VNC Viewer
File View Help

Enter a VNC Server address or search & sionin.. ~

_images/image289.png
2B piGraspberypi: ~

<No>

_images/image290.png
173 VN Viewer

_images/image293.png
Daisy - VNC Viewer = @] %

VNC Server: 192.168.0.234:5900

(5= I
puimorssossssnns [ASPDETTY

Remember password

Catchphrase: Evita Osaka gopher. Concert robot capsule.
Signature: €3-73-¢8-d8-43-92-97-84

_images/image282.png
[Raspberry Pi Software Configuration Tool (raspi-config) ————

1 system Options Configure system settings
2 Display Options Configure display sectings
In o

4 Performance Options Configure performance settings
5 Localisation Options Configure language and regional settings
& Advanced Options Configure advanced settings

2 Update Update this tool to the latest version

9 About raspi-config Information about this configuration ool

<Select> <Finisn>

_images/libraries.png
Name

] christmas tree

1 custom_dynamic_shape
] custom shape

] dazzling lights

) hellomatre

|| moving_eyes

Date modified

10/8/2021 6:38 PM
10/8/2021 6:37 PM
10/8/2021 6:37 PM
9/30/202111:51 AM
10/8/2021 6:36 PM
10/9/2021 5:50 PM

4 sunfounder_rgbMatixzip.

10/9/2021 5:50 PM

_images/moving_eyes1.png

_images/image296.png
&} Remote Desktop Connection - %
5 Typethename of 2 program, folder, document, o Intemet
Bl Lource and Windowes will open foryou.

| Remote Desktop
) Connection

Open: [EEER

Computer: | [ENIRENER v
] [

Username: h2s

You will e asked for credentials when you connec.

) Show Optons Comnect

_images/image297.png
Cog to raspberrypt

connecting

Session

username

password

_images/pacman2.png
Code = Colours Sprites

Hex Array to use in your code.

HEXArray | 0x3c,0x7e,0xdf,0xff,0xf0,0xff,0x7e,0x3¢

_images/select_board.png
@ Dazzling lights | Arduino 1.8.15,

Boards Manager...

Arduino AVR Boards
Arduino Mbed OS Nano Boards
Arduino Mbed O RP2040 Boards

File Edit Sketch Tools Help
Auto Format
Archive Sketch
Dazling_lights | Fix Encoding & Reload
1 #include <4 Manage Libraries... Ctrl+Shifts1
: Serial Moritor Curl+shiftsM
" byee lined Serial Plotter Curl+Shift+L
s a0 1
C e o s WRIO!/WIRNINA Firmare Updater
4 (s 0 5| Port "COM7 (Arduino Uno)*
10 {6, 0, & GetBoard Info
1o, 0, 1)
121 Programmer: "AVRISP mkil"
2 Burn Bootloader
14 byte color T
15 25, 102, 0},
16 (25, 25, o),
G, 255, 01,
1= o, 128, 128),
1510, 0, 28],
20 128, 0, 128

Arduino Yin
Arduino Uno
Arduino Duer
Arduino Nanc
Arduino Meg
Arduino Meg
Arduino Leon
Arduino Leon
Arduino Micr
Arduino Esple

_images/moving_eyes2.png
Hin

HHHBIHHT

_images/pacman.png
Code = Colours Sprites

Hex Array to use in your code.

HEXArray | 0x3c,0x7e,0xdc,0x8,0xf8,0xfc,0x7e,0x3¢

_images/image294.png

_images/image295.png
[pi@raspberrypi:~ § sudo apt-get install xrdp

|[reading package lists... Done

[Building dependency tree

Reading state information... Done

[The following extra packages will be installe
vnc4server x1l-apps xl1l-session-utils xbase-clients xbitmaps xfonts-base

Suggested package
vnc-java mesa-utils x1l-xfs-utils

The following NEW packages will be installed:
vnc4server x1l-apps x1l-session-utils xbase-clients xbitmaps xfonts-base

xrdp
0 upgraded, 7 newly installed, 0 to remove and 0 not upgraded.

s.

Need to get 8,468 kB of arch
After this operation, 17.1 MB of additional disk space will be used.

Do you want to continue? [¥/n] vjj

_images/tree2.png
HHHBIHHT

_images/upload.png
@ Dazzling lights | Arduino 1.8.15
File Edit Sketch Tools Help

Dazing_lghts
T —

2

10
1n
12
.

byee line[] [4]

i,
12,
13,
1,
s,
1,
o,

o
o
o
o
o
o
o

L
2,
3
4
s
&
7

7
7
7
7
7
7
7

= o, 0,0,

7

_images/snake_flow.png
Keyborad_control)

Set snake and dot
coordinates and colors

receive key

If count<50?

Set the background

Set the background
to dark blue

to dark cyan

count+1

Ifkey is pressed?

tum left

turn right

go forward

the dot is eaten?

The snake grows longer and
a new dot will appear.

_images/tree1.png

_images/upload2.png
Sketch uses 4852 bytes (15%) of program storage space. Maximim is 32256 bytes.
Global variables use 537 bytes (26%) of dynamic memory, leaving 1511 bytes for

5 Atduine Uno on COMT

_images/showhex.png
heart[]={0x00,0x66,0xff,0

l

{0000 0000,
01100110,
11111111,
11111111,
01111110,
00111100,
00011000,
00000000}

_images/snake.png
i

EE
o
[T

_images/select_port.png
@ Dazzling lights | Arduino 1.8.15
File Edit Sketch Tools Help

Auto Format
Archive Sketch
Dazling_lights | Fix Encoding &